Step 1 Part Two; Res > 0

Theorem 6.11 For s # 1 we have
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for integer N > 1.

Proof Either apply Euler Summation or, as here, Partial Summation from
first principles. (Note that this argument, for s = 1, has been seen before in
the previous Chapter.)

Interchanging summation and integration,
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Let N — oo, for which we will require Re s > 1.
Theorem 6.12 For Res > 1,
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Proof Let N — oo in (9), when
Nl—s‘ — Nl—Res =0

since 1 — Res < 0. Also
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since Res > 1. Hence, the integral converges and
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The Important Observation to make is that the integral on the right hand
side of (10) converges (absolutely) in the larger half-plane Re s > 0 for
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Definition 6.13 For Res > 0 define the Riemann zeta function by (10).

The content of Theorem 6.12 is that ((s) defined by (10) for Re s > 0 agrees
with the series definition (6) for Res > 1.

What of ((s) defined by (10) in Re s > 0; apart from the pole at s = 1 is it
holomorphic in Re s > 07

Theorem 6.14 ((s) defined by (10) for Res > 0 is holomorphic in that
half-plane apart from a simple pole, residue 1, at s = 1.

Proof not given. [ |

There is a version of Weierstrass’s M-test for integrals that shows that the
integral in (10) converges uniformly in the half-plane Re s > § for any 6 > 0.

And then there is a version of Weierstrass’s Theorem for integrals, see the
Background: Complex Analysis II notes, which shows that if an integral of
a holomorphic function converges uniformly then it is holomorphic.

Unfortunately Weierstrass’s Theorem for integrals result is not directly ap-
plicable here since it requires the integrand to be a continuous function yet
in this case the integrand in (10), {u}u~'~%, is not a continuous function of
u for fixed s. Instead the integral has to be split into a sum of integrals over
intervals (n,n + 1), n > 1, and Weierstrass’s Theorem for series applied. We
can then deduce that the integral in (10) is holomorphic in Res > 0. (See
Appendix.) Hence
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Example 6.15 We have that

1 = 1 1
S S Pt (13)

is holomorphic (analytic) on Res > 1 and
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is a function analytic on Res > 0 and which agrees with (13) on Res > 1.
We have now an example of

Definition 6.16 Assume that F(z) is analytic on domain F and G(z) is
analytic on G where G O F. If G(z) = F(z) for all z € F we say that G is
an analytic continuation of F to G.

Hence (14) is an analytic continuation of (13) to Res > 0.

On a problem sheet you are asked to show that

SO ()

n=1

for Res > 1, and that the left hand-side converges for Res > 0. It can be
shown that the Dirichlet Series on the left converges uniformly in Res > d
for any 6 > 0, and so is holomorphic in Res > 0. Thus we have another
analytic continuation of ((s) to Res > 0.

Assume that F'(z) is analytic on domain F containing a convergent sequence
of points along with the limit point. Further assume that there are two
analytic continuations G7 and G5 of F' to a larger domain G O F. Then,
since GG; and Gy will be equal on this convergent sequence and limit point,
Theorem 6.9 implies Gy (2) = G2 (2) on G. That is, the analytic continuation
is unique. This means that the word ‘an’ in Definition 6.16 can be replaced
by ‘the’. And it also means that (10) is the only way of extending ((s) to
Res > 0.
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